Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

Use elementary row operations to find the inverse of \left[\begin{matrix}-2 & -1 & 3 \\ 4 & -2 & 1 \\ 0 & 4 & -2\end{matrix}\right] I know the inverse as I've done it via cofactor and adjugate. And wolframalpha has confirmed the result. But no matter how many times I try with the elementary row operations I can't get it right.

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

\[\qquad\qquad\quad\quad[\textbf A|\textbf I]\]\[\left[\begin{matrix}-2 & -1 & 3 \\ 4 & -2 & 1 \\ 0 & 4 & -2\end{matrix}\right|\left.\begin{matrix}1 & 0 & 0\\ 0 & 1 & 0 \\ 0 &0 & 1\end{matrix}\right]\]
\[\left[\begin{matrix}-2 & -1 & 3 \\ 0 & -4 & 7 \\ 0 & 4 & -2\end{matrix}\right|\left.\begin{matrix}1 & 0 & 0\\ 2 & 1 & 0 \\ 0 &0 & 1\end{matrix}\right]\qquad R_2\rightarrow R_2+2R_1\]
\[\left[\begin{matrix}-2 & -1 & 3 \\ 0 & -4 & 7 \\ 0 & 0& 5 \end{matrix}\right|\left.\begin{matrix}1 & 0 & 0\\ 2 & 1 & 0 \\ 2 &1 & 1 \end{matrix}\right]\qquad R_3\rightarrow R_3+R_2\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

\[\left[\begin{matrix}2 & 1 & 2 \\ 0 & -4 & 7 \\ 0 & 0& 5 \end{matrix}\right|\left.\begin{matrix}1 & 1 & 1\\ 2 & 1 & 0 \\ 2 &1 & 1 \end{matrix}\right]\qquad R_1\rightarrow -(R_1-R_3)\]
\[\left[\begin{matrix}2 & 1 & 2 \\ 0 & 4 & -2 \\ 0 & 0& 5 \end{matrix}\right|\left.\begin{matrix}1 & 1 & 1\\ 0 & 0 & 1 \\ 2 &1 & 1 \end{matrix}\right]\qquad R_2\rightarrow -(R_2-R_3)\]
\[\left[\begin{matrix}2 & 1 & 2 \\ 0 & 1 & -1/2 \\ 0 & 0& 5 \end{matrix}\right|\left.\begin{matrix}1 & 1 & 1\\ 0 & 0 & 1/4 \\ 2 &1 & 1 \end{matrix}\right]\qquad R_2\rightarrow R_2/4\]
\[\left[\begin{matrix}2 & 0& 5/2 \\ 0 & 1 & -1/2 \\ 0 & 0& 5 \end{matrix}\right|\left.\begin{matrix}1 & 1 & 3/4\\ 0 & 0 & 1/4 \\ 2 &1 & 1 \end{matrix}\right]\qquad R_1\rightarrow R_1-R_2\]
\[\left[\begin{matrix}1 & 0& 5/4 \\ 0 & 1 & -1/2 \\ 0 & 0& 5 \end{matrix}\right|\left.\begin{matrix}1/2 & 1/2 & 3/8\\ 0 & 0 & 1/4 \\ 2 &1 & 1 \end{matrix}\right]\qquad R_1\rightarrow R_1/2\]
\[\left[\begin{matrix}1 & 0& 5/4 \\ 0 & 1 & -1/2 \\ 0 & 0& 1 \end{matrix}\right|\left.\begin{matrix}1/2 & 1/2 & 3/8\\ 0 & 0 & 1/4 \\ 2/5 &1/5 & 1/5 \end{matrix}\right]\qquad R_3\rightarrow R_3/5\]
\[\left[\begin{matrix}1 & 0& 5/4 \\ 0 & 1 & 0 \\ 0 & 0& 1 \end{matrix}\right|\left.\begin{matrix}1/2 & 1/2 & 3/8\\ 1/5 & 1/10 & 7/20 \\ 2/5 &1/5 & 1/5 \end{matrix}\right]\qquad R_2\rightarrow R_2+R_3/2\]
\[\left[\begin{matrix}1 & 0& 0 \\ 0 & 1 & 0 \\ 0 & 0& 1 \end{matrix}\right|\left.\begin{matrix}0 & 1/4 & 1 /8\\ 1/5 & 1/10 & 7/20 \\ 2/5 &1/5 & 1/5 \end{matrix}\right]\qquad R_1\rightarrow R_1-5 R_3/4\]\[\qquad\qquad[\textbf I |\textbf A^{-1}]\]
wow that is a lot of work^
\[\color{gray} {\begin{matrix}0 & & 0 \\ & & \\ & \smile & \end{matrix}} \]
Wow thank you @UnkleRhaukus !! I understand why you make below the diagonal 0, but then you started working on the top triangle. Does the order matter? For example can I make the bottom triangle 0 then work down the diagonal making them 1? Is making the bottom triangle 0 the really only required step to be done first?
you can perform any of the allowed row operations at any time and in any order, some ways are certainly quicker than others , im not sure if the steps i used were the simplest, but they did work
Okay, thank you again.
http://www.math.odu.edu/~bogacki/cgi-bin/lat.cgi

Not the answer you are looking for?

Search for more explanations.

Ask your own question