anonymous
  • anonymous
find the derivative of f(x)=x^2 + x -3 using the definition of the derivative
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Callisto
  • Callisto
\[f'(x)\]\[=\lim_{h \rightarrow 0}\frac{f(x+h) - f(x)}{h}\]\[=\lim_{h \rightarrow 0}\frac{[(x+h)^2 + (x+h) -3] -(x^2 + x -3)}{h}\]Can you simplify the fraction first?
anonymous
  • anonymous
I used x^2 + 2(x)(h) + h^2 + x +h -3 -x^2 -x +3 = 2x + x ??
Callisto
  • Callisto
x^2 + 2(x)(h) + h^2 + x +h -3 -x^2 -x +3 <- correct for denominator. But it's not equal to 2x + x... \[x^2 + 2(x)(h) + h^2 + x +h -3 -x^2 -x +3\]Group the like terms together: \[x^2 -x^2 + x -x -3 +3+ h^2+ 2(x)(h)+h\] Now, can you simplify the above expression

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
basically factor out the h and H(h+2x+1) divided by the h on denominator and = h + 2x + 1?
Callisto
  • Callisto
Yes.
Callisto
  • Callisto
And you got: \[\lim_{h \rightarrow 0} (h+2x+1)\]Can you evaluate the limit?
anonymous
  • anonymous
Would be 2x + 1 ??? Because h is going to 0
Callisto
  • Callisto
Indeed it is!
anonymous
  • anonymous
Holy Cow! It came together finally!! Thank you very much for your help! I would have been stuck!!!
Callisto
  • Callisto
You're welcome :)
anonymous
  • anonymous
Have a great day!!
Callisto
  • Callisto
You too! :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.