experimentX
  • experimentX
Prove: \[ \Gamma(z)\Gamma(1-z) = \frac{\pi}{\sin{(\pi z)}} \]
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
experimentX
  • experimentX
|dw:1349012805707:dw|
experimentX
  • experimentX
|dw:1349012926410:dw|
experimentX
  • experimentX
this is Euler's reflection formula ... http://en.wikipedia.org/wiki/Reflection_formula I never tried this. Looks worth!!

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
\[\displaystyle \sin(\pi z) = \pi z \prod_{n \neq 0} \left(1- \frac zn\right) \exp\left( \frac z n \right)\]
anonymous
  • anonymous
beta function\[B(x,y)=\frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}\]so\[\Gamma(z)\Gamma(1-z)=B(z,1-z)=\int_{0}^{\infty} \frac{u^{z-1}}{1+u} \text{d}u\]
anonymous
  • anonymous
later integral can be done complex integration on this |dw:1349016144043:dw|contour
anonymous
  • anonymous
thats a circle i believe...lol
anonymous
  • anonymous
this contour will work i know...but there are some more
anonymous
  • anonymous
|dw:1349016381131:dw|
anonymous
  • anonymous
\[\displaystyle \frac 1 {\Gamma \left({z}\right)} = z e^{\gamma z} \prod_{n=1}^\infty \left({ 1 + \frac z n}\right) \exp\left({-\frac z n}\right)\]
experimentX
  • experimentX
yeah i can do that contour!!
experimentX
  • experimentX
that must be equal to ... directly from the formula \[ \pi \over \sin (\pi z)\] \[ \int_0^{\infty}{x^{a-1} \over {1 +x^b}}dx = {\pi \over b \sin \left ( {a \pi \over b} \right )} \]

Looking for something else?

Not the answer you are looking for? Search for more explanations.