anonymous
  • anonymous
integral of (3t-2)/(t+1)
Mathematics
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

TuringTest
  • TuringTest
easiest way is probably\[u=t+1\implies t=u-1\]\[du=dt\]
TuringTest
  • TuringTest
long division would also work
anonymous
  • anonymous
I tried it with long division and it was pretty easy that way.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
i like the gimmick of writing \[3t-2=3t+3-5\]
anonymous
  • anonymous
where do I go with long division after I get 3 remainder -5?
anonymous
  • anonymous
so you get \[\frac{3t-2}{t+1}=\frac{3t+3-5}{t+1}=1-\frac{5}{t-1}\]
anonymous
  • anonymous
oops \[\frac{3t-2}{t+1}=\frac{3t+3-5}{t+1}=3-\frac{5}{t-1}\]
anonymous
  • anonymous
then integrate each piece first one gives you \(3x\) second gives you \(-5\ln(t-1)\)
anonymous
  • anonymous
ah got it thanks very much
anonymous
  • anonymous
damn another typo!! should be \[3x-5\ln(x+1)\]
anonymous
  • anonymous
|dw:1349062509781:dw|

Looking for something else?

Not the answer you are looking for? Search for more explanations.