experimentX
  • experimentX
Integration:
OCW Scholar - Single Variable Calculus
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
experimentX
  • experimentX
the answer of the integration is \[ {1 \over 4} \sqrt{b^2 -a^2}(b-a)\left( t + {\sin (4t)\over 4}\right)\]
experimentX
  • experimentX
On the other hand, Mathematica expresses solution as \[ \frac{\sqrt{a-x} \sqrt{-b+x} \left(2 \sqrt{a-x} \sqrt{-b+x} (-a-b+2 x)-(a-b)^2 \text{ArcTan}\left[\frac{a+b-2 x}{2 \sqrt{a-x} \sqrt{-b+x}}\right]\right)}{8 \sqrt{(a-x) (-b+x)}} \]
experimentX
  • experimentX
this is minus \[ {1 \over 4} \sqrt{b^2 -a^2}(b-a)\left( t - {\sin (4t)\over 4}\right) \]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Callisto
  • Callisto
Hmm.... \[\int \sqrt{(a-x)(x-b)}dx\]Let \(x=acos^2t + bsin^2t\) \[dx = (-2a\sin t\cos t + 2b \sin t\cos t)dt = (b-a)sin2t dt\] Then, the integral becomes (a-x) = a - (acos^2 t + bsin^2 t) = a (sin^2 t) - b sin^2 t = (a-b) sin^2 t (x-b) = (acos^2t + bsin^2t) - b = acos^2 t - b (cos^2 t) = (a-b) cos^2t \[\int \sqrt{(a-b)sin^2t \times (a-b)cos^2t} (b-a)sin2tdt\]\[=\int [(a-b)sint cost] (b-a)sin2tdt\]\[=-\frac{1}{2}\int (b-a)^2sin^22tdt\] \[=-\frac{1}{2}(b-a)^2\int sin^2 2tdt\]\[=-\frac{1}{2}(b-a)^2\int \frac{1-cos4t}{2}dt\]\[=-\frac{1}{4}(b-a)^2 (t-\frac{1}{4}sin4t)+C\]Anything wrong here?
experimentX
  • experimentX
looks like i made error
experimentX
  • experimentX
yeah i made error ... - ( 1 - cos ..) = -
experimentX
  • experimentX
If we put \[ \sin (t) = \sqrt{x-a\over b-a} \\ \cos (t) = \sqrt{b-x\over b-a} \\ t = \arctan \sqrt { \left( x-a \over b-x\right) } \]
experimentX
  • experimentX
we get pretty close to |dw:1349076028513:dw|
experimentX
  • experimentX
this is pretty close from solution of WA
experimentX
  • experimentX
Cleaning up the solution i get \[ \left(2 \sqrt{a-x} \sqrt{-b+x} (-a-b+2 x)-(a-b)^2 \text{ArcTan}\left[\frac{a+b-2 x}{2 \sqrt{a-x} \sqrt{-b+x}}\right]\right) \over 8 \]
Callisto
  • Callisto
Why should we express t in terms of arc tan?
experimentX
  • experimentX
I don't know ... I just want match up our answer with WA
Callisto
  • Callisto
Perhaps... That help get a prettier t... \[tan t = sint / cost = \sqrt{\frac{x-a}{b-a}}\] *Still working on that*
experimentX
  • experimentX
Let's graph our solution
experimentX
  • experimentX
something is missing
experimentX
  • experimentX
\[ \tan t = \sin t / \cos t = \sqrt{\frac{a-x}{x-b}} \]
Callisto
  • Callisto
:'( I got into trouble!!! \[=-\frac{1}{4} (a-b)^2 [\tan^{-1} (\sqrt{\frac{x-a}{b-a}})-\frac{\sqrt{(x-a)(b-x)}}{b-a}(1-\frac{x-a}{b-a})]+C \]\[=-\frac{1}{4} (a-b)^2 [\tan^{-1} (\sqrt{\frac{x-a}{b-a}})-\frac{\sqrt{(x-a)(b-x)}(b-x)}{(b-a)^2}]+C \]\[=-\frac{1}{4} (a-b)^2 [\tan^{-1} (\sqrt{\frac{x-a}{b-a}})]+\frac{1}{4}\sqrt{(x-a)(b-x)}(b-x)+C \]Blah... Doesn't seem right :'(
experimentX
  • experimentX
I almost got same result as mathematica except for this one \[ \left[\frac{a+b-2 x}{2 \sqrt{a-x} \sqrt{-b+x}}\right] \]
experimentX
  • experimentX
\[ =-\frac{1}{4} (a-b)^2 [\tan^{-1} (\sqrt{\frac{x-a}{b-a}})-\frac{\sqrt{(x-a)(b-x)}}{b-a}(1-2\frac{x-a}{b-a})]+C \] you missed 2 here.
Callisto
  • Callisto
Oh!!! Let me redo it....
experimentX
  • experimentX
also change that value inside arctan it should be \[ \sqrt{x-a \over b-x}\]
Callisto
  • Callisto
Sorry.... typos!!
Callisto
  • Callisto
Once again, it doesn't look great at all... \[-\frac{1}{4}(a-b)^2 [ tan^{-1} (\sqrt{\frac{x-a}{b-x}}) - \frac{\sqrt{(x-a)(b-x)}}{b-a}[1-2(\frac{x-a}{b-a})]] +C\]\[=-\frac{1}{4}(a-b)^2 [ tan^{-1} (\sqrt{\frac{x-a}{b-x}}) - \frac{\sqrt{(x-a)(b-x)}}{b-a}(\frac{a+b-2x}{b-a})] +C\]\[=-\frac{1}{4}(a-b)^2 tan^{-1} (\sqrt{\frac{x-a}{b-x}}) + \frac{1}{4}\sqrt{(x-a)(b-x)}(a+b-2x) +C\]
experimentX
  • experimentX
so far so good every part matches solution from WA except \[ \tan^{-1} \left(\sqrt{\frac{x-a}{b-x}}\right ) \]
Callisto
  • Callisto
What is that in WA?
experimentX
  • experimentX
Wolf ...
Callisto
  • Callisto
I meant what wolf showed you...
experimentX
  • experimentX
yep!! http://www.wolframalpha.com/input/?i=Integrate+sqrt%28%28a-x%29%28x-b%29%29
experimentX
  • experimentX
cancel those terms at the front
experimentX
  • experimentX
\[ \frac{\sqrt{a-x} \sqrt{-b+x} \left(2 \sqrt{a-x} \sqrt{-b+x} (-a-b+2 x)-(a-b)^2 \text{ArcTan}\left[\frac{a+b-2 x}{2 \sqrt{a-x} \sqrt{-b+x}}\right]\right)}{8 \sqrt{(a-x) (-b+x)}} \]
experimentX
  • experimentX
Cancelling those first terms we get \[ {1 \over 8}\left(2 \sqrt{a-x} \sqrt{-b+x} (-a-b+2 x)-(a-b)^2 \text{ArcTan}\left[\frac{a+b-2 x}{2 \sqrt{a-x} \sqrt{-b+x}}\right]\right)\]
experimentX
  • experimentX
it seems we are correct!! Wolf is pretty nasty!!
experimentX
  • experimentX
We need to prove that \[ \tan^{-1} \left(\sqrt{\frac{x-a}{b-x}}\right ) = \text{ArcTan}\left[\frac{a+b-2 x}{2 \sqrt{a-x} \sqrt{-b+x}}\right] \] this is not correct ... however I'll show you this is equivalent in integrals!!
Callisto
  • Callisto
No... not really, the coefficient of arctan (simpler one) is -1/4, while the coefficient of arctan (wolf) is -1/8..
experimentX
  • experimentX
|dw:1349079549133:dw|
experimentX
  • experimentX
there is a formula that \( \arctan(x) + \arctan(1/x)= {\pi \over 2}\) |dw:1349079814250:dw|
experimentX
  • experimentX
hence we have \[ \tan^{-1} \left(\sqrt{\frac{x-a}{b-x}}\right ) = {\pi \over 2} - \text{ArcTan}\left[\frac{a+b-2 x}{2 \sqrt{a-x} \sqrt{-b+x}}\right]\] But this \( \pi \over 2 \) is constant and you can ignore it. Hence the result of the wolf follows.
Callisto
  • Callisto
But what about the coefficient??
experimentX
  • experimentX
\[ =-\frac{1}{4}(a-b)^2 \tan^{-1} \left(\sqrt{\frac{x-a}{b-x}}\right ) + \frac{1}{4}\sqrt{(x-a)(b-x)}(a+b-2x) +C \\ -\frac{1}{4}(a-b)^2 {1\over 2 }\left( {\pi \over 2} - \text{ArcTan}\left[\frac{a+b-2 x}{2 \sqrt{a-x} \sqrt{-b+x}}\right] \right ) + \frac{1}{4}\sqrt{(x-a)(b-x)}(a+b-2x) +C\\ \frac{1}{8}(a-b)^2 \left( \text{ArcTan}\left[\frac{a+b-2 x}{2 \sqrt{a-x} \sqrt{-b+x}}\right] \right ) + \frac{1}{4}\sqrt{(x-a)(b-x)}(a+b-2x) \\ +C -{\pi \over 16 } (a-b)^2\\ \text{ Just let } C -{\pi \over 16 } (a-b)^2 = C_1 \text{ some constnat} \]
experimentX
  • experimentX
Looks like i missed some - somewhere.
Callisto
  • Callisto
Ehhhhh... I love my solution *v*
experimentX
  • experimentX
yeah .. no need to go though rigorous way as Wolf.
experimentX
  • experimentX
the above is just equally right!!
Callisto
  • Callisto
It's always good know to how to get the wolf solution. Thanks !!!
experimentX
  • experimentX
well ... remember this \( \arctan(x) + \arctan(1/x)= {\pi \over 2} \) and after integration you can manipulate your solution by adding or subtracting constants. expanple:- \( c + \sin^2 x\) and \( c - \cos ^2 x\) are equivalent solution.
Callisto
  • Callisto
Why.......
experimentX
  • experimentX
|dw:1349081258153:dw|
experimentX
  • experimentX
this is typical when you integrate \[ \int \sin x \cos x \; dx\] one time let sin(x) = u ... another time let cos(x) = u ... another time put sin(x)cos(x) = 1/2 sin(2x)
Callisto
  • Callisto
Eh?! three ways to do it?!
experimentX
  • experimentX
if the difference between two solution is constant then they are equivalent. well you could put it up that way. but they were all equivalent.
Callisto
  • Callisto
Hmm.. I remember someone told me that when I got a different answer from the textbook, it may not be the case that I did it wrong. sometimes, the answers may be different by some constants.. Perhaps, that's the case :\

Looking for something else?

Not the answer you are looking for? Search for more explanations.