anonymous
  • anonymous
find all points on the curve y=x^3-3X where the tangent is parallel to the x-axis.
MIT 18.02 Multivariable Calculus, Fall 2007
jamiebookeater
  • jamiebookeater
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

calculusfunctions
  • calculusfunctions
When in doubt always start with the derivative of the function. Hence if y = x³ − 3x dy/dx = 3x² − 3 where dy/dx is of course the instantaneous rate of change function (the slope function). Since the tangent to y is parallel to the x-axis, dy/dx = 0 ∵ the slope of the x-axis is zero (x-axis is horizontal and the slope of any horizontal line is zero). Thus dy/dx = 0 and since dy/dx = 3x² − 3, 3x² − 3 = 0 solving for x, we obtain x = ±1 when x = -1, y = 2 when x = 1, y = -2 ∴ the tangent to y = 3x² − 3 is parallel to the x-axis at the points (-1, 2) and (1, -2)

Looking for something else?

Not the answer you are looking for? Search for more explanations.