Ace school

with brainly

  • Get help from millions of students
  • Learn from experts with step-by-step explanations
  • Level-up by helping others

A community for students.

Prove that the range of \[1 + \sin ^{2} x\] is between 1 and 2, inclusive. How do I show this?

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SIGN UP FOR FREE
sin x maximum vallue is 1
so max value of exp will be 2
now minimum value when x=0 sin x=0

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

so minimum value =1
so 1+x^2 has values [1,2]
gt tht?
becaus sin x max value is 1
sinx , minimum value =-1, sin^2x , minimum value =0 ( sin^2x) cant be negative and maximum value of sin^2x=1....put sin^2x=1 for maximum value and put sin^2x=0 for minimum value
yes maximum value is 2
so to maximise sin^x+1 ,,,,sin x maximum should be there
ie 1+1=2

Not the answer you are looking for?

Search for more explanations.

Ask your own question