anonymous
  • anonymous
find particular solution to 2x' + x=3t^2
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
amistre64
  • amistre64
what methods do you know of?
anonymous
  • anonymous
undetermined coefficients
amistre64
  • amistre64
got a lousy connection i believe

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
happening to me too, OS is bugged today.
anonymous
  • anonymous
site is slow for me too :(
amistre64
  • amistre64
well, lets start by dividing off that 2 x' + x/2 = 3t^2/2 we want to determine an e^rt that will allow us to turn this into a product rule; e^t/2 should work e^(t/2) x' +e^(t/2) x/2 = e^(t/2)3t^2/2 when we integrate both sides we get \[e^{t/2}x= \int e^{t/2}\frac{3t^2}{2}dt\]
anonymous
  • anonymous
trial soln. is at^2 + bt +c 2x' = 4at + 2b x= at^2 +bt +c a=3 4a+b =0 2b+c =0 b=-12 c=24
amistre64
  • amistre64
\[\int e^{t/2}\frac{3t^2}{2}dt\] e^(t/2) +t^2 2e^(t/2) -2t 4e^(t/2) +2 8e^(t/2) \[2*\frac32e^{t/2}(t^2-4t+8)\]
amistre64
  • amistre64
forgot the +C at the end:) this gives us \[e^{t/2}x=3e^{t/2}(t^2-4t+8)+C\] divide off the e^{t/2} \[x=3(t^2-4t+8)+Ce^{-t/2}\]
amistre64
  • amistre64
my idea was undetermined coeffs tho was it
amistre64
  • amistre64
*wasnt .... ugh, when things slow down, they sloowww down
anonymous
  • anonymous
I did it the 'integrating factor' way too, just because I was curious... fair bit of work doing that integral..

Looking for something else?

Not the answer you are looking for? Search for more explanations.