Is space curvature relative to the frame of reference? If I have an object that is of some length \(l\) moving at a relativistic velocity \(v\) for some reference frame, then length contraction states that \(l=\gamma \times l'\). But at the frame of reference, there is no length contraction. The curvature of space should be Euclidean. However, relative to the moving object in the prior example, the exact opposite is true, with there being no curvature near the primed frame from the primed point of view. What if one of the objects is accelerating? If I stand on a planet, will my geometry of space agree with someone who's not standing on one?

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Is space curvature relative to the frame of reference? If I have an object that is of some length \(l\) moving at a relativistic velocity \(v\) for some reference frame, then length contraction states that \(l=\gamma \times l'\). But at the frame of reference, there is no length contraction. The curvature of space should be Euclidean. However, relative to the moving object in the prior example, the exact opposite is true, with there being no curvature near the primed frame from the primed point of view. What if one of the objects is accelerating? If I stand on a planet, will my geometry of space agree with someone who's not standing on one?

Physics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

Physics.SE link to question: http://physics.stackexchange.com/questions/38868/is-space-curvature-relative

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Not the answer you are looking for?

Search for more explanations.

Ask your own question