• anonymous
Is space curvature relative to the frame of reference? If I have an object that is of some length \(l\) moving at a relativistic velocity \(v\) for some reference frame, then length contraction states that \(l=\gamma \times l'\). But at the frame of reference, there is no length contraction. The curvature of space should be Euclidean. However, relative to the moving object in the prior example, the exact opposite is true, with there being no curvature near the primed frame from the primed point of view. What if one of the objects is accelerating? If I stand on a planet, will my geometry of space agree with someone who's not standing on one?
  • Stacey Warren - Expert
Hey! We 've verified this expert answer for you, click below to unlock the details :)
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
  • chestercat
I got my questions answered at in under 10 minutes. Go to now for free help!
  • anonymous
Physics.SE link to question:

Looking for something else?

Not the answer you are looking for? Search for more explanations.