anonymous
  • anonymous
Divide.
Mathematics
katieb
  • katieb
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
1 Attachment
anonymous
  • anonymous
the x^2 + 2x + 1 is thw square of (x + 1)^2 as per the previous questions you can solve it
anonymous
  • anonymous
The first part would be (x -2) 2x? + 1

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Yes!
anonymous
  • anonymous
@theredhead1617 do you know how to solve the problem
anonymous
  • anonymous
\[\frac{ \frac{ (x+1)(x+1) }{ x-2 } }{ \frac{ (x-1)(x+1) }{ (x-2)(x+2) } }\] \[\frac{ (x+1)(x+1) }{ (x-2) } \div { \frac{ (x-1)(x+1) }{ (x-2)(x+2) } }\\] \frac{ (x+1)(x+1) }{ (x-2) } \times { \frac{ (x-2)(x+2) }{ (x-1)(x+1) } }\\]\] can you solv further?
anonymous
  • anonymous
No @miteshchvm I dont understand how to. I wish to know where to begin but i do not
anonymous
  • anonymous
can you factorise x^2 + 2x + 1?
anonymous
  • anonymous
x^2 + 2x + 1 = (x + 1)^2 = (x+1)(x+1) x^2 - 1 = (x +1)(x - 1) x^2 - 4 = (x-2)(x+2) you get it?
anonymous
  • anonymous
(x + 1) to second power?
anonymous
  • anonymous
yes
anonymous
  • anonymous
\[x^2 + 2x + 1 = (x + 1)^2 = (x+1)(x+1) \] \[x^2 - 1 = (x +1)(x - 1) \] \[x^2 - 4 = (x-2)(x+2)\] you get it? i wrote this instead of your question in order to simplify,
anonymous
  • anonymous
just a little bit, its hard
anonymous
  • anonymous
now refer to my first comment
anonymous
  • anonymous
on the previous question?
anonymous
  • anonymous
your question can be written as\[{ \frac{ (x^2 + 2x + 1) }{ x-2 } } \div { \frac{ x^2 - 1 }{ x^2 - 4 } } \] now \[\frac{ (x+1)(x+1) }{ (x-2) } \div { \frac{ (x-1)(x+1) }{ (x-2)(x+2) } }\\] \] \[\frac{ (x+1)(x+1) }{ (x-2) } \times { \frac{ (x-2)(x+2) }{ (x-1)(x+1) } }\\] \]
anonymous
  • anonymous
you get it?
anonymous
  • anonymous
im getting a better understand of it
anonymous
  • anonymous
A:
1 Attachment
anonymous
  • anonymous
B:
1 Attachment
anonymous
  • anonymous
C:
1 Attachment
anonymous
  • anonymous
D:
1 Attachment
anonymous
  • anonymous
on eliminating values you get \[\frac{ (x+1)(x+2) }{ (x-1) }\]
anonymous
  • anonymous
thanks for everything @miteshchvm

Looking for something else?

Not the answer you are looking for? Search for more explanations.