Quantcast

Got Homework?

Connect with other students for help. It's a free community.

  • across
    MIT Grad Student
    Online now
  • laura*
    Helped 1,000 students
    Online now
  • Hero
    College Math Guru
    Online now

Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing

Dallasb22 Group Title

A regular hexagon with sides of 3" is inscribed in a circle. Find the area of a segment formed by a side of the hexagon and the circle. (Hint: remember Corollary 1--the area of an equilateral triangle is 1/4 s2 √3.)

  • one year ago
  • one year ago

  • This Question is Closed
  1. JakeV8 Group Title
    Best Response
    You've already chosen the best response.
    Medals 2

    maybe you can find the radius of the circle by looking at one of the triangles that make up the inscribed hexagon. That will allow you to get the whole circle area, and 1/6 of that area falls in the "pie piece" that includes the triangle. Then, if you have the area of that triangle, subtract it from the pie piece to get the segment in question.

    • one year ago
  2. isratalo Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    the radius of that circle will be 3. so are=pi r^2=28.27 by joining the centre with each corner of the hexagon u'll get the area of each part. So Area of each part=28.27/6=4.545.............(i) Area of the triangle= (3)^2*sq. root of 3/4=3.9.............(ii) Now subtracting the area of equation (ii) from equation (i) u will get the result.

    • one year ago
  3. Dallasb22 Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    0.645?

    • one year ago
  4. Dallasb22 Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    @isratalo

    • one year ago
  5. JakeV8 Group Title
    Best Response
    You've already chosen the best response.
    Medals 2

    Area of circle with radius 3 = 3^2 pi = 9 pi. 1/6 of the circle = (9/6) pi = (3/2) pi The triangle has hypotenuse 3, base 3, so the height is (3/2)sqrt(3). The area of that triangle is (1/2)bh = (1/2)(3)(3/2)sqt(3) = (9/4)sqrt(3) Area of 1/6 circle - Area of triangle = (3/2)pi - (9/4)sqrt(3) = 4.712 - 3.897 = 0.815 That's what I got... but you need to double check the geometry and the math.

    • one year ago
  6. isratalo Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    Ooops, i'm really sorry, JakeV8 is right. I've checked it right now. Actually, previously i made a calculation mistake..Sorry again..

    • one year ago
    • Attachments:

See more questions >>>

Your question is ready. Sign up for free to start getting answers.

spraguer (Moderator)
5 → View Detailed Profile

is replying to Can someone tell me what button the professor is hitting...

23

  • Teamwork 19 Teammate
  • Problem Solving 19 Hero
  • You have blocked this person.
  • ✔ You're a fan Checking fan status...

Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.

This is the testimonial you wrote.
You haven't written a testimonial for Owlfred.