Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

Solve for x: 3^x - 2 = 8/3^x

I got my questions answered at in under 10 minutes. Go to now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer


To see the expert answer you'll need to create a free account at Brainly

\[3^{x} - 2 = 8/3^{x}\]
multiply both sides by 3 to the x to eliminate the denominator and subtract eight from both sides\[3^{2x}-2*3^{x}-8=0\]
Do you follow so far?

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Yes, I got \[3^{x} = 4 , 3^{x} = -2\]
Then what?
Now treat it as a quadratic equation set equal to zero and use the quadratic formula to solve for 3 to the x, because 3 to the x was squared, just like a variable, and we have second and third terms as well.\[\frac{ 2 +\sqrt{4-4*(-8)} }{ 2 }\] You can ignore the possibility where you subtract the square root, since that would give a negative answer, which 3 to the x can't equal. Solve and you get \[\frac{ 8 }{ 2 }=4=3^{x}\]Now you should take the natural logarithm of both sides and solve.\[\ln 4=\ln 3^{x}\]Pull the exponent down and divide both sides by the natural log of 3\[\ln 4=x \ln 3\]\[\frac{ \ln4 }{ \ln3 }=x\] That should be your answer
Thank you soo much!! That was very helpful! :D

Not the answer you are looking for?

Search for more explanations.

Ask your own question