anonymous
  • anonymous
The sum of minterms of a boolean function of n variables is equal to 1. (a) Prove the above statement for n=3. (b) Suggest a procedure for a general proof.
MIT 6.002 Circuits and Electronics, Spring 2007
jamiebookeater
  • jamiebookeater
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
a'b'c'+a'b'c+a'bc'+a'bc+ab'c'+ab'c+abc'+abc|dw:1349346391795:dw|
1 Attachment
anonymous
  • anonymous
here n=3 .. so we have 8 minterms ..
anonymous
  • anonymous
According to K-Map law, the result of grouping of 8 1's or 0's [1's for SOP and 0's for POS ] is 1.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Another way of doing it can be:- acronyms= (1-X) = X bar as i can not write it directly As you know A+(1-A) =1 So abc+(1-abc)=1 similarly other pairs can be solve and we will get 1+1+1+1 which itself is equal to 1. Hence proved.

Looking for something else?

Not the answer you are looking for? Search for more explanations.