Ace school

with brainly

  • Get help from millions of students
  • Learn from experts with step-by-step explanations
  • Level-up by helping others

A community for students.

Find the matrix B of the linear transformation T(x)=Ax with respect to the basis B = (v1, v2,...,vm): A= [0 1; 2 3] v1= [1; 2] v2= [1; 1]. I can make the [x]_B span...how do you get that final matrix????? (basis change)

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SIGN UP FOR FREE
@Jemurray3 Can u check this out?
To clarify, I can get to B = [ [ 2; 8 ]_B , [ 1; 5 ]_B ] but don't understand how the final B works out to be B = [ 6 4 ; -4 -3 ]
Sorry, just lost a lot of text. Re-typing...

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Okay sorry. If I have a vector \[\vec{x} = \left(\begin{matrix} x_1 \\ x_2 \end{matrix}\right) \] that I want to express as a vector y with respect to the basis vectors v1 and v2, then \[ \vec{x} = [\vec{v_1} \space \vec{v_2}]\vec{y} = V\vec{y} \] so, \[\vec{y} = V^{-1}\vec{x} \] So, the linear transformation \[T(x) = A\vec{x} \] can also be written as \[T(y) = AV\vec{y} \] But at the end of the day, this quantity \[ \left( AV\vec{y}\right) \] is a vector with respect to the basis V. To make it a vector with respect to x again, I must apply V inverse: \[T(x) = V^{-1}AV\vec{y} = B\vec{y} \] so in conclusion, long story short, \[B = V^{-1}AV \]
Wait, that last part is wrong. Sorry, ,my explanation got kinda muddled.... the end result is right, but the last two steps weren't explained properly.
Here: If T maps X to X', then \[T(x) = \vec{x'} = A\vec{x} \] but \[\vec{x'} = V\vec{y'}, \vec{x} = V \vec{y} \] so \[ V\vec{y'} = AV\vec{y} \] \[\vec{y'} = V^{-1}AV\vec{y} = B\vec{y}\]
awesome awesome! very cool..thanks sooooo much!! :) one final question (sorry to be annoying..) but so I found V(inv) to be [-2 -4; -2 -5] and then when I go through V(inv)*A*V, I am dealing with [-2 -4; -2 -5] *[0 1; 2 3]*[1 1; 2 1] but I keep ending up with [-10 -6; -12 -7]. I'm pretty sure it's not my matrix multiplication or inverted matrix V that's the problem..do you notice if I'm using a vector out of place somewhere?
V(inv) should be [-1 1 ; 2 -1]
and V should obviously be [1 1 ; 2 1]
OH MY GOODNESS!!!!! haha okay, so I was a little ahead of myself in my notes..my ridic V(inv) above was actually my INCORRECT V(inv)*A already..that's what happens when your work gets all jumbled up, I guess. But my inverted V was wrong anyway..I guess I should take a step back and work on that now hahaha. THANK YOU SO MUCH!!! (exam in 15 hours..angsting so hard right now!) you're awesome! =D
and thanks, swissgirl for hooking me up with a math life-saver! (sorry, im new to the site and dont know how to do anything yet..) im off to study some more!
No problem, best of luck.

Not the answer you are looking for?

Search for more explanations.

Ask your own question