richyw
  • richyw
Show that the line of intersection of the planes\[x+2y-z=2\mbox{ and } 3x+2y+2z=7\]is parallel to the line \[\langle x,y,x \rangle = \langle 1+6t,3-5t,2-4t \rangle\]
Mathematics
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

richyw
  • richyw
my attempt at a solution. First I found normal vectors to the planes. \[\vec{n}=\langle 1,2,-1 \rangle\]\[\vec{m}=\langle 3,2,2\rangle\]then the cross product to get the vector parallel to that.\[\vec{n}\times \vec{m} = \langle 6, -5, -4 \rangle\]
richyw
  • richyw
so wouldn't this be the direction of the line formed by the intersection of the two planes?
richyw
  • richyw
so maybe what I am doing wrong is finding the direction of the second line. how would I do this? find two points on the line and then use the displacement vector?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

richyw
  • richyw
NICE just figured it out myself, question closed.
anonymous
  • anonymous
nice

Looking for something else?

Not the answer you are looking for? Search for more explanations.