Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

Solve 1- sin 2 theta/ 1-cos theta= -cos theta

See more answers at
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer


To see the expert answer you'll need to create a free account at Brainly

use parenthesis please
1-(sin 2 theta) / (1-cos theta) = -cos theta
1+cosx=sin2x/(1-cosx) 1-(cosx)^2=2sinxcosx (sinx)^2=2sinxcosx sinx=2cosx tanx=2 x=arctan2 x=63.43 degree or 1.107 radians

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

\[1 - \frac{sin(2\theta)}{1-cos(\theta)} = -cos(\theta)\] \[1 +cos(\theta) = \frac{sin(2\theta)}{1-cos(\theta)}\] \[(1 +cos(\theta))(1-cos(\theta)) = \frac{sin(2\theta)}{1-cos(\theta)}*(1-cos(\theta))\] \[1 -cos^2(\theta) = sin(2\theta)\] note that \[1 = sin^2(\theta) + cos^2(\theta) \] therefore \[1 -cos^2(\theta) = sin^2(\theta)\] so plug that back into the orginal equation \[sin^2(\theta) = sin(2\theta)\] also note that \[2cos(\theta)sin(\theta) = sin(2\theta)\] therefore \[sin^2(\theta) = 2cos(\theta)sin(\theta)\] divide by \[sin(\theta)\] and you get \[sin(\theta)=2cos(\theta)\] divide by \[cos(\theta)\]and you get \[tan(\theta)=2\] do a little \[tan^{-1}(\theta)=tan^{-1}(2)\] and you've solved for theta
Thank you(:
good job

Not the answer you are looking for?

Search for more explanations.

Ask your own question