anonymous
  • anonymous
Find the square root of (999993)(999991)(999989)(999987)+16.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
lgbasallote
  • lgbasallote
have you tried a device called "calculator"? unless you're interested to learn how to solve that manually
anonymous
  • anonymous
yes, there is.....
lgbasallote
  • lgbasallote
well then, the first step is to solve (999993)(999991) manually

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Write 1mm as x then (x-7)(x-9)(x-11)(x-13)+16 is (x^2-20x+95)^2
anonymous
  • anonymous
well, that's right....
anonymous
  • anonymous
999980000095
anonymous
  • anonymous
If we let y = 999990, the expression boils down to \[\sqrt{(y+3)(y+1)(y-1)(y-3) +16}\]\[=\sqrt{(y^2-1)(y ^{2}-9)+16}\]\[=\sqrt{y^4 - 10y^2+9+16}\]\[=\sqrt{y^4-10y^2+25}\]\[=y^2-5\]then,\[=(999990)^{2}-5=988880000100-5=988880000095\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.