anonymous
  • anonymous
S3 what means in group
MIT 18.06 Linear Algebra, Spring 2010
katieb
  • katieb
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

helder_edwin
  • helder_edwin
if it is group theory u r talking about. then \(S_3\) is the symmetry group of order 3. That is, \(S_3\) is the group of all permutations defined on the set \(\{1,2,3\}\). It has 3!=6 elements. These 6 elements are: \[ \large \rho_0=\begin{pmatrix} 1 & 2 & 3\\ 1 & 2 & 3 \end{pmatrix} \] \[ \large \rho_1=\begin{pmatrix} 1 & 2 & 3\\ 2 & 3 & 1 \end{pmatrix} \] \[ \large \rho_2=\begin{pmatrix} 1 & 2 & 3\\ 3 & 1 & 2 \end{pmatrix} \] \[ \large \mu_1=\begin{pmatrix} 1 & 2 & 3\\ 1 & 3 & 2 \end{pmatrix} \] \[ \large \mu_2=\begin{pmatrix} 1 & 2 & 3\\ 3 & 2 & 1 \end{pmatrix} \] \[ \large \mu_3=\begin{pmatrix} 1 & 2 & 3\\ 2 & 1 & 3 \end{pmatrix} \]
helder_edwin
  • helder_edwin
heres is the answer for one of your last posts @bayanhorani !!
anonymous
  • anonymous
i have aequation can help me

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
about differential equation

Looking for something else?

Not the answer you are looking for? Search for more explanations.