anonymous
  • anonymous
find the slope of the line tangent to the following curve at x=1...
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
\[y = \sin \left[ x - \tan(\frac{ \Pi }{ 4 }x ^{66}) \right] + x ^{\frac{ 1 }{ 1+66\Pi }}\]
anonymous
  • anonymous
slope of the line TANGENT to this curve at x =1
anonymous
  • anonymous
answer: -99Pi

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
\[y' = \cos \left[ x - \tan(\frac{ \Pi }{ 4 }x ^{66})\right](1 - \sec ^{2}(\frac{ \Pi }{ 4 }x ^{66}))(2\sec(\frac{ \Pi }{ 4 }x ^{66}))(\frac{ 33\Pi }{ 2 }x ^{65}) + \frac{ 1 }{1+66\Pi }x ^{\frac{ 1 }{ 1+66\Pi }-1}\]
anonymous
  • anonymous
is what i get for the derivative
anonymous
  • anonymous
damn even this is too long
anonymous
  • anonymous
could you guys verify the derivative expression
anonymous
  • anonymous
if youre working on this
anonymous
  • anonymous
what kind of sadistic math teacher gave you this problem....
helder_edwin
  • helder_edwin
what is the power of x to the right??
anonymous
  • anonymous
you have to use chain rule then substitute x=1.
anonymous
  • anonymous
your y(prime) is correct up to 2sec...
anonymous
  • anonymous
\[66pix^{65}/4\]
anonymous
  • anonymous
the above should be in place of your 2sec value... then add the derivative of that last value and substitute x=1

Looking for something else?

Not the answer you are looking for? Search for more explanations.