Callisto
  • Callisto
Given that \(y=x^2cosx\) satisfies \(x^2y^{(2)} - 4xy^{(1)} + (x^2 +6)y =0\) , where \( y^{(n)} = \frac{d^ny}{dx^n}\). (a) Show that when x=0, \((n-2)(n-3)y^{(n)} = -n(n-1)y^{(n-2)}\). (b) If we use the notation \(\bar y^{(n)} = \frac{d^ny}{dx^n}|_{x=0}\), find \(\bar y^{(2m)}\) and \(\bar y^{(2m+1)}\). How to do part (b)?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Callisto
  • Callisto
\[\bar y^{(n)} = -(\frac{n(n-1)}{(n-2)(n-3)})\bar y^{(n-2)}\]When n=2m \[\bar y^{(2m)} = -(\frac{2m(2m-1)}{(2m-2)(2m-3)})\bar y^{(2m-2)}\]\[\bar y^{(2m)} = -\frac{m(2m-1)}{(m-1)(2m-3)}\bar y^{(2m-2)}\]Then... I don't know how to continue.. When m=0, \[\bar y^{(0)} = 0\] When m=1, \[\bar y^{(2)} = \frac{d^2y}{dx^2}(x^2cosx)|_{x=0} = 2\] When m=2, \[\bar y^{(4)} = \frac{2(4-1)}{(2-1)(4-3)}\bar y^{(4-2)} =2\times 3 \times (2) = 12\]Hmm...
Callisto
  • Callisto
Oh wait. It should be -12. My bad!
Callisto
  • Callisto
Well, I guess 0 is not in the domain of m, so just ignore it...

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Callisto
  • Callisto
Hmm.... By observing the pattern, I got \[\bar y^{(2m)} = (-1)^{m-1}(2m-1)(2m)\]
Callisto
  • Callisto
So far so good? Or...?
Callisto
  • Callisto
Not that good. 0 is not a domain when n=2m. Since in part a, domain of n is positive integers. So, for m, it can't be 0. Hmm...
TuringTest
  • TuringTest
*
Callisto
  • Callisto
But for n=2m+1, m can be 0 Since the domain of n is positive integers, When m=0, 2m+1 = 1 >0 => it's in the domain of n, so for n=2m+1, domain of m is integers greater than or equal to 0.

Looking for something else?

Not the answer you are looking for? Search for more explanations.