anonymous
  • anonymous
Find the inverse function of f(x)= (2-x^3)^5
Mathematics
schrodinger
  • schrodinger
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

RadEn
  • RadEn
@Coolsector f(x)^(1/5) = 2-x^3 ---> x^3 = 2- f(x)^(1/5) :)
anonymous
  • anonymous
oops! you are right f(x)^(1/5) = 2-x^3 x^3 =2 - f(x)^(1/5) ill call f-1(x) the inverse of f(x) so : f-1(x) = (2 - x^(1/5) )^(1/3)
anonymous
  • anonymous
im confused after -f(x)^(1/5)+2=x^3

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
where?
anonymous
  • anonymous
what is my next step
anonymous
  • anonymous
1. first you want to switch x and y (and since f(x) can also be written as y) for example: y = (2-x^3)^5 (eqn. 1) will become x = (2-y^3)^5 (eqn. 2) Then you want to isolate y from eqn. 2. using algebra
anonymous
  • anonymous
take the 5th root of both sides
anonymous
  • anonymous
Yes.. so then you'll have \[\sqrt[5]{x} = (2-y ^{3})\] so what will you do?

Looking for something else?

Not the answer you are looking for? Search for more explanations.