Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

The problem states: A function f(x,y) is defined on the disc Q: x^2+y^2<=1 and equals 1 on it. The domain of f is D(f)=Q and f(x,y)=1 on Q. The graph of the function is made of steel and hangs in the air. There is a flower at the origin and a few bees are in the air. There current positions are listed below. Hint: If the bee is at the height z>1, where should is be in order not to see the flower? Which of these bees can see the flower? a) (4,5,6) b) (2,3,4) c) (6,6,9) d) (0,1,2) e) (2,1,3) f) (1/3,1/3,1/3)

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SIGN UP FOR FREE
|dw:1349639764374:dw|
this is how i see it ..
can you do it now ?

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

hey!:) the bees who can see the flower are the bees under the disc or above the disc but not right above it
for example here its fine as well: |dw:1349724030045:dw|
thank you!

Not the answer you are looking for?

Search for more explanations.

Ask your own question