anonymous
  • anonymous
find the maximum and minumum values of the n variable function:X1+X2+...Xn subject to the constraint X1^2+X2^2+...+Xn^2=1
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
aren't u supposed to use lagrangian Constrained Optimization ?
anonymous
  • anonymous
so u want to find extremums of \[f(x_1,x_2,...,x_n)=x_1+x_2+...+x_n\]subject to this constraint\[x_1^2+x_2^2+...+x_n^2=1\]
anonymous
  • anonymous
set up ur lagrangian\[L=f-\lambda g\]and consequencly ur equations\[x_1^2+x_2^2+...+x_n^2=1\]\[\frac{\partial L}{\partial x_1}=0\]\[\frac{\partial L}{\partial x_2}=0\]...\[\frac{\partial L}{\partial x_n}=0\]these n+1 equation with n+1 unknown (degree of freedom is 0) will give u the values of \[x_1,x_2,...,x_n,\lambda\]for which \(f\) is max or min

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
still one missed point\[g(x_1,x_2,...,x_n)=x_1^2+x_2^2+...+x_n^2-1\] plz let me know if u got it from here
anonymous
  • anonymous
yeah, but why there is n+1 equations?
anonymous
  • anonymous
we also have dL/d入=x1^2+x2^2+...xn^2-1 right?
anonymous
  • anonymous
n partial derivatives and the constrained itself is one of the equations so u have n+1 equation
anonymous
  • anonymous
and we also have dL/d入=-g right? @mukushla
anonymous
  • anonymous
then i got x1^2+x2^2+....xn^2=1
anonymous
  • anonymous
L=f+g入
anonymous
  • anonymous
then dL/dx1 =1+2x1入 but not zero?
anonymous
  • anonymous
one of equations for example\[\frac{\partial L}{\partial x_1}=0\]\[\frac{\partial f}{\partial x_1}-\lambda\frac{\partial g}{\partial x_1}=0\]\[1-2\lambda x_1=0\]set up other equations like this anf find \(\lambda\) first
anonymous
  • anonymous
ok, so what I did is:L=g+fλ, and then x1=x2=x3=...xn=-1/(2λ) for the constraint function, we can get nX1^2=1, then x=(1/n)^0.5, then I plug this in to L again, the function L can write as L=nX1+(-1/2λ)(nX1^2-1) after plugging into x=(1/n)^0.5 i FINALLY get L=n^0.5 so there is only one answer, but I have to find maximum and min, So I really get confused, can you give me more hint? appreciates a lot!
anonymous
  • anonymous
maybe i made a mistake, x=(+or -) n^0.5 right, so there r 2 answer for L, n^0.5 and -n^0.5? so one is max and the other one is min, am I RIGHT?
anonymous
  • anonymous
emm...what i know as standard form for L is f-gλ
anonymous
  • anonymous
f+gλ or f-gλ doesnt matter, cause the answer is same. if gλ, then g=0, if -gλ then -g=0, g also =0, so this isnt the point
anonymous
  • anonymous
ok u r right it doesn't matter and it gives\[x_1=x_2=...=x_n=\frac{1}{2\lambda}\]and plugging this in\[x_1^2+x_2^2+...+x_n^2=1\]gives\[n\frac{1}{4\lambda^2}=1\]and\[\lambda=\pm \frac{\sqrt{n}}{2}\]so the max of \(f\) is when\[x_1=x_2=...=x_n=\frac{1}{\sqrt{n}}\]and the min is when\[x_1=x_2=...=x_n=-\frac{1}{\sqrt{n}}\]
anonymous
  • anonymous
and note that u want to find max and min of f not L
anonymous
  • anonymous
\[\text{max} \ (f)=\frac{n}{\sqrt{n}}=\sqrt{n}\]and\[\text{min} \ (f)=-\frac{n}{\sqrt{n}}=-\sqrt{n}\]
anonymous
  • anonymous
i hope its clear
anonymous
  • anonymous
@mukushla yes, we got the same answer, thx a lot!!!!
anonymous
  • anonymous
no problem :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.