JuanPerez
  • JuanPerez
If [\ sum n a^2_n < \infty \] is it true that [\ sum n a_n < \infty \]??
MIT 18.01 Single Variable Calculus (OCW)
jamiebookeater
  • jamiebookeater
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

JuanPerez
  • JuanPerez
If \[\sum n a^2_n <\infty \]is it true that \[ \sum a_n < \infty \] ????
anonymous
  • anonymous
i think yes . and i do not require the "if" to see it.The results will always be
anonymous
  • anonymous
\[\sum_{n}^{k}na_n^2=\sum_{n}^{k}n*\sum_{n}^{k}a_n*\sum_{n}^{k}a_n<\infty\] Since the larger of the 3 summations is less than infinity, that would also make the individual summation less than infinity as well.

Looking for something else?

Not the answer you are looking for? Search for more explanations.