Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

Using each of the digits 2, 3, 4, 6, 7, and 8 exactly once, construct two 3-digit integers M and N so that M-N is positive and is a small as possible. Compute M-N. The smallest M-N I found was 39. Anyone?

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SIGN UP FOR FREE
39 was the lowest I found as well
I bet there's a mathematical way to figure out the smallest M-N without knowing M or N, or something. >:( I never know with this questions if there's something wrong with my answer.
234-243=9

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Or cant we repeat digit for both M and N
Sorry, you can't repeat digits.
Well Yes it is 39
And there is a mathematical way to do it.
Let the first number "M" be = abc =a*100+b*10+c And the other number "N"be =a'b'c' = a'*100+b'*100+c' Then, M-N=(a*100+b*10+c)-(a'*100+b'*10+c') =(a-a')*100+(b-b')*100+(c-c')
So, M-N to be minimum...... a-a' must be positive smallest number (FIRST priority) b-b' must be smallest (Second priority) c-c' must be smallest (Third priority)
So, a-a'=1 when a=4 and b=3 b-b'=-6 when b=2 and b'=6 c-c'=-1 when c=6 and c'=7
Thus, Smallest M-N=1*100+(-6)*10+(-1)=39

Not the answer you are looking for?

Search for more explanations.

Ask your own question