Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

charged particles each of magnitude \(2.00 \mu C\) are located on the x axis, one is at x=1.00m, the other is at x=-1.00m. Determine the electric potential on the y axis at y=0.500m.

Physics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SIGN UP FOR FREE
I don't understand why this is zero. why is it zero?
|dw:1349753624257:dw| Im not sure either. I would expect it to be zero if this were the case|dw:1349753700882:dw| hope you find out
I'm pretty sure it's not zero and my book has the wrong answer. All I did was say \[V=\frac{1}{4\pi\epsilon_0}\sum^i_{i=1}\frac{q_i}{r_i}\]\[V=\frac{2q_1}{4\pi\epsilon_0r_1}\]Since \(r_1=r_2\) and \(q_1=q_2\) Is this correct?

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

|dw:1349763953576:dw|horizontal components cancel leaving vertical\[\vec E=\frac{2q}{4\pi\epsilon_0r^2}\sin\theta\hat j=\frac{2qy}{4\pi\epsilon_0r^3}\hat j\]bringing a point charge along y from +infty\[V=\int_{\infty}^{1/2}Edy=\frac q{2\pi\epsilon_0}\int_\infty^{1/2}\frac y{(1+y^2)^{3/2}}dy\]\[=\frac q{2\pi\epsilon_0\sqrt{1+\frac14}}=\frac {q_0}{\pi\epsilon\sqrt5}\]a nice answer, but not zero I agree your book is wrong
slight typo\[=\frac q{2\pi\epsilon_0\sqrt{1+\frac14}}=\frac q{\pi\epsilon_0\sqrt5}\]
@turingtest That's the right answer. You don't need to go through all that however, it's simply 2kq/r where r= sqrt(5/4)
lol I know, I just wanted to be rigorous. I always feel better about disagreeing with the book when I can prove something from scratch.
thanks, you think paying $250 for a textbook and two solution manuals they could put some effort into explaining solutions (or at least give correct answers!) haha.

Not the answer you are looking for?

Search for more explanations.

Ask your own question