Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

How do you show that vector, x= (2,3,4)+ t1 (1,1,1) + t2 (1,2,3) is a subspace of R^n?

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SIGN UP FOR FREE
Well for starters in order for a vector to be a subspace it must be linearly dependant
Since ( 2,3,4)=(1,1,1)+(1,2,3), it follows that (2,3,4)+t1(1,1,1)+t2(2,3,4)=(t1+1)(1,1,1)+(t2+1)(2,3,4)
hmmmm I would go about it just a drop differently

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

\[ \left( \begin{array}{ccc} 2 & 1 & 1 \\ 3 & 1 & 2 \\ 4 & 1 & 3 \end{array} \right)\] I forgot the terms but basically x=(2+1t_1+1t_2)+(3+1t_1+2t_2)+(4+1t_1+3t_2) Now if you would row reduce this then you will see that this matrix is linearly dependant
\[ \left( \begin{array}{ccc} 1 & {1 \over 2} & {1 \over 2} \\ 3 & 1 & 2 \\ 4 & 1 & 3 \end{array} \right)\] 1/2R_1=R_1
\[ \left( \begin{array}{ccc} 1 & {1 \over 2} & {1 \over 2} \\ 0 &- {1 \over 2} & - {1 \over 2} \\ 4 & 1 & 3 \end{array} \right)\] 3R_1+R_2=R_2
\[ \left( \begin{array}{ccc} 1 & {1 \over 2} & {1 \over 2} \\ 0 &1 & 1 \\ 4 & 1 & 3 \end{array} \right)\] -2R_2=R_2
you are going to get all 0s in the first column, with one 1 in each of the second and third columns. Thats because (2,3,4)=1(1,1,1)+1(1,2,3).
\[ \left( \begin{array}{ccc} 1 & {1 \over 2} & {1 \over 2} \\ 0 &1 & 1 \\ 0 & -2 & -2 \end{array} \right)\] -4R_1+R_3=R_3
\[ \left( \begin{array}{ccc} 1 & {1 \over 2} & {1 \over 2} \\ 0 &1 & 1 \\ 0 & 1 & 1 \end{array} \right)\] -1/2R_3=R_3
\[ \left( \begin{array}{ccc} 1 & {1 \over 2} & {1 \over 2} \\ 0 &1 & 1 \\ 0 &0 & 0 \end{array} \right)\] -1R_2+R_3=R_3 As you see the last row is just zeroes this means that this matrix is linearly dependant meaning that it is a subspace
thanks :)

Not the answer you are looking for?

Search for more explanations.

Ask your own question