anonymous
  • anonymous
Why is the following function continuous at every number in its domain? Is the domain all real numbers? This is the the function: (see reply)
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
\(\ \Huge F(x)=sin^{-1}(x^2-1) .\)
anonymous
  • anonymous
yes the domain is all real numbers. as sin function is continous for all all values of the theta then its inverse is also continous for all values of its domain
baldymcgee6
  • baldymcgee6
The domain of that function \[\ f(x)=\sin^{-1}(x^2-1) \] is simply the range of \[\ f(x)=\sin(x^2-1) .\] As we know, the sine function has a domain of all numbers, but a bounded range, there for the sine inverse will have a bounded domain, but a range of all numbers. @Study23

Looking for something else?

Not the answer you are looking for? Search for more explanations.