anonymous
  • anonymous
A particle is projected with speed v at an angle alpha to the horizontal. Find the speed of the particle when it is at height h
Physics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
@UnkleRhaukus @ash2326
ash2326
  • ash2326
@zaphod Particle's velocity has two components : 1) Horizontal Velocity= \(v\cos \alpha\) {remains unchanged throughout the length of the motion obviously we are ignoring the air friction } 2) Vertical Velocity=\(v \sin \alpha\) initially { decelerated by gravity} |dw:1349870216959:dw| Do you understand this part?
anonymous
  • anonymous
yes now how do i get the height into this can u show the working

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

ash2326
  • ash2326
Only \( v \sin \alpha\) is used for vertical motion. Using \[v^2-u^2=2as\] Taking upward direction to be positive We need to find vertical velocity when the particle reaches a height h \[v^2-u^2=2as\] s= h a=-g \[u=v\sin \alpha \] \[v^2-(u\sin \alpha)^2=2\times (-g)\times h\] now find v from this This will be the vertical velocity at height h |dw:1349870813000:dw|
anonymous
  • anonymous
speed will be the resultant of v cos alpha and wt u found out?
ash2326
  • ash2326
Note that this v is different from the v given in the question. Let it be x \[x|dw:1349871003737:dw|^2-(u\sin \alpha)^2=2\times (-g)\times h\]
ash2326
  • ash2326
Yeah speed will be \[\sqrt {( v\ \cos \alpha)^2+x^2}\]
ash2326
  • ash2326
\[x^2-(u\sin \alpha)^2=2\times (-g)\times h\]
anonymous
  • anonymous
|dw:1349871122014:dw|
ash2326
  • ash2326
Actually the velocity has two components v cos alpha and x Speed will be the magnitude
ash2326
  • ash2326
yes
anonymous
  • anonymous
thanks :)
ash2326
  • ash2326
welcome (:
anonymous
  • anonymous
\[speed = \sqrt{(V \sin \alpha)^{2}-2gh +(V \cos \alpha)^2}\] \[= \sqrt{(V^2 (\sin ^2 \alpha +\cos^2 \alpha)-2gh}\] \[= \sqrt{V^2 -2gh}\]
anonymous
  • anonymous
thanks algebraic :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.