sasogeek
  • sasogeek
\(\huge 3^x - 2^{y+2}=49 \) \(\huge 2^y - 3^{x-2}+1=0 \) solve the system of equations.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
sasogeek
  • sasogeek
i tried using logs but i got to a dead end... :/
asnaseer
  • asnaseer
try using a subtle substitution
sasogeek
  • sasogeek
how?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

asnaseer
  • asnaseer
\[a=3^x\]\[b=2^y\]
asnaseer
  • asnaseer
remember that \(2^{y+2}=2^2\times2^y=4\times2^y\)
sasogeek
  • sasogeek
ohhh, ok :) yeah...
asnaseer
  • asnaseer
:)
TuringTest
  • TuringTest
This is why I love this site, I never would have known what to do there...
sasogeek
  • sasogeek
i know right, i'm helping a friend out but i'm stuck myself so thanks to you guys ;)
asnaseer
  • asnaseer
I agree - I have learnt SO MUCH from this site - it is truly amazing.
anonymous
  • anonymous
where's the button for "round of applause"?
sasogeek
  • sasogeek
lol
asnaseer
  • asnaseer
he he :D
sasogeek
  • sasogeek
thanks guys, we did it! xD \(\large x \approx 4.069 \) and \(\large y \approx 3.263\) can someone confirm this please... :)
asnaseer
  • asnaseer
hmmm - I actually get integer solutions
asnaseer
  • asnaseer
Using the substitutions I listed above, I get:\[a-4b=49\tag{1}\]\[b-\frac{a}{9}+1=0\tag{2}\]Multiplying (2) by 9 and moving the constant to the right-hand-side, we get:\[9b-a=-9\tag{3}\]Adding (1) and (3) gives:\[5b=40\implies b=8\]Substituting this into (1) gives:\[a=81\]Therefore:\[2^y=8\implies y=3\]\[3^x=81\implies x=4\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.