Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

Evaluate: \(\left[\begin{matrix}1 & 2 &1 & 3 \\2&3&2&0\\3&1&0&1\\0&0&3&2\end{matrix}\right]\)

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

I got -102. Is it correct or did I get an arithmetic error somewhere?
I got -98
Hmm... Let me just double check everything here...

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

\[3\left[\begin{matrix}1 & 2 &3\\ 2 & 3 &0\\3&1&1\end{matrix}\right] - 2\left[\begin{matrix}1 & 2 &1\\ 2 & 3 &2\\3&1&0\end{matrix}\right]\]Did you end up doing this?
determinant?
I think so.
must be method of cofactors, eh?
Yup...
I get 72. But maybe I made a mistake. Might be worth looking at this to help: http://people.richland.edu/james/lecture/m116/matrices/determinant.html
I get 72 as well
Look down that web page at the section titled "Larger Order Determinants"
another source for ya http://tutorial.math.lamar.edu/Classes/LinAlg/MethodOfCofactors.aspx
Well, 72 is one of my answer choices... I did it again, but I got - 72? I think it's just an arithmetic error on my part. THanks guys!
yw :) - crosses fingers in the hope that he did make a mistake :)
*did NOT ...
Wait, one last thing, when I find the determinants of the 3 x 3, can I just use the diagonal method (I'm not sure of the name) or do I have to use minors?
as @TuringTest said, use the method of cofactors - see the links we gave you.
Ok, once again, thank you :)
the problem in what you did is that you forgot that all elements on the diagonals will give positive minors.
I phrased that poorly, not sure how to say it without giving away the answer
Also, determinants are usually written with straight lines on either side of the matrix elements - instead of the square brackets that you used.
Oh! I got it! And @asnaseer for some reason, I see them written both ways when doing school work?
Hmmm - ok, well I was taught that straight lines is what should be used. Maybe the notation differs from country to country?
Perhaps.
if it's left in brackets it should at least say \(\det\) in front of it In the US we use what @asnaseer said
Here is an example of how we are taught in the UK: http://www.intmath.com/matrices-determinants/matrix-determinant-intro.php
Also, when working with algebra, if you have a matrix A, then we would write its determinant as either:\[|A|\]or:\[det(A)\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question