Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

Unit 2, Exponential Response, Sinusoidal Input PDF, page 1 at the bottom: I am confused by how they got from 3+16i = sqrt(265)e^i@ (@ = phi) to the solution 9/sqrt(265)cos(2t-@). I feel fairly comfortable with the complex numbers, Eulers Formula etc, and I also understand the Exponential Response Formula. It's just that step that I am confused about. I used complex conjugate to multiply out 9/(3+16i) then put into exponential form (9/sqrt(265))(cos@ - isin@), which makes the solution the real part of ((9/sqrt(265))(cos@ - isin@)(cos2t + isin2t). I just dont understand how that ends up being (

MIT 18.03SC Differential Equations
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

I dont understand how that ends up being 9/sqrt(265) * cos(2t - @). and yes I undertand cos(t) + sin(t) = cost(t - @). I am taking ODE at UVA Wise, but my professor isn't teaching complex replacement. Any help would be seriously appreciated. I really want to learn this method.
The complex solution is \(z_p = \frac{9 e^{2it}}{3 + 16i}\), and what we want is its real part in the so-called amplitude-phase form. -- Start by transforming the denominator to the polar form: \(3 + 16i = \sqrt{3^2 + 16^2} e^{i \, atan2(16, 3)} = \sqrt{265} e^{i \phi}\), where \(\phi = tan^{-1}(16/3)\); -- (Don't yet use Euler's definition); -- Your solution is now: \(z_p = \frac{9}{\sqrt{265}} \frac{e^{2it}}{e^{i \phi}}\); -- Now use a simple exponents law (\(x^n / x^m = x^{n-m}\)) to get \(z_p = \frac{9}{\sqrt{265}} e^{i (2t - \phi)}\); -- Use Euler's formula: \(z_p = \frac{9}{\sqrt{265}} (cos(2t - \phi) + i \, sin(2t - \phi))\); -- And drop the imaginary part: \(x_p = Re(z_p) = \frac{9}{\sqrt{265}} cos(2t - \phi)\). You could also expand the numerator using Euler's, expand the fraction by denominator's conjugate, multiply brackets (leaving the conjugate in Cartesian form and using \(i^2 = -1\)), get the real part and use the trigonometric formula (\(a \, cos(\theta) + b \, sin(\theta) = A \, cos(\theta - \phi)\) with \(a + ib = A \, e^{i \phi}\)).

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Not the answer you are looking for?

Search for more explanations.

Ask your own question