• anonymous
Unit 2, Exponential Response, Sinusoidal Input PDF, page 1 at the bottom: I am confused by how they got from 3+16i = sqrt(265)e^i@ (@ = phi) to the solution 9/sqrt(265)cos(2t-@). I feel fairly comfortable with the complex numbers, Eulers Formula etc, and I also understand the Exponential Response Formula. It's just that step that I am confused about. I used complex conjugate to multiply out 9/(3+16i) then put into exponential form (9/sqrt(265))(cos@ - isin@), which makes the solution the real part of ((9/sqrt(265))(cos@ - isin@)(cos2t + isin2t). I just dont understand how that ends up being (
MIT 18.03SC Differential Equations
  • Stacey Warren - Expert
Hey! We 've verified this expert answer for you, click below to unlock the details :)
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
  • jamiebookeater
I got my questions answered at in under 10 minutes. Go to now for free help!
  • anonymous
I dont understand how that ends up being 9/sqrt(265) * cos(2t - @). and yes I undertand cos(t) + sin(t) = cost(t - @). I am taking ODE at UVA Wise, but my professor isn't teaching complex replacement. Any help would be seriously appreciated. I really want to learn this method.
  • wrwrwr
The complex solution is \(z_p = \frac{9 e^{2it}}{3 + 16i}\), and what we want is its real part in the so-called amplitude-phase form. -- Start by transforming the denominator to the polar form: \(3 + 16i = \sqrt{3^2 + 16^2} e^{i \, atan2(16, 3)} = \sqrt{265} e^{i \phi}\), where \(\phi = tan^{-1}(16/3)\); -- (Don't yet use Euler's definition); -- Your solution is now: \(z_p = \frac{9}{\sqrt{265}} \frac{e^{2it}}{e^{i \phi}}\); -- Now use a simple exponents law (\(x^n / x^m = x^{n-m}\)) to get \(z_p = \frac{9}{\sqrt{265}} e^{i (2t - \phi)}\); -- Use Euler's formula: \(z_p = \frac{9}{\sqrt{265}} (cos(2t - \phi) + i \, sin(2t - \phi))\); -- And drop the imaginary part: \(x_p = Re(z_p) = \frac{9}{\sqrt{265}} cos(2t - \phi)\). You could also expand the numerator using Euler's, expand the fraction by denominator's conjugate, multiply brackets (leaving the conjugate in Cartesian form and using \(i^2 = -1\)), get the real part and use the trigonometric formula (\(a \, cos(\theta) + b \, sin(\theta) = A \, cos(\theta - \phi)\) with \(a + ib = A \, e^{i \phi}\)).

Looking for something else?

Not the answer you are looking for? Search for more explanations.