anonymous
  • anonymous
Can the sum of any two altitudes of a triangle be smaller than one of its legs?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
I don't think so, but I'm not sure yet what the easiest proof of that would be.
anonymous
  • anonymous
I'm sure the triangle inequality will be in there somewhere, and maybe, since altitudes form right angles, Pythagorean theorem will be useful.
anonymous
  • anonymous
Consider an extremely obtuse isosceles triangle. With sides a,a, and b, angles theta (small), theta, and pi - 2 theta. The two greater altitudes are b sin theta, so to meet the specification of the problem, 2bsin theta < b implies sin theta less than 1/2. Plenty of angles meet that specification.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
@AnimalAin That works, thanks. You proved that for triangle ABC, \(a > h_b + h_c\) for some \(a\). What if I asked you to prove that the following: \(b>h_b+h_c\) for some \(b\)?
anonymous
  • anonymous
Use the same method, assume b < a/2, and work the inequality similarly. The angles will be smaller, but it can be done.

Looking for something else?

Not the answer you are looking for? Search for more explanations.