Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

Need Help for Lab 6 please ...

MIT 6.002 Circuits and Electronics, Spring 2007
I got my questions answered at in under 10 minutes. Go to now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly


Get your free account and access expert answers to this and thousands of other questions

me too stuck in the same ..
1. The final output voltage of the inverter when its input is high was measured to be ~193mv. The equivalent circuit for the inverter when the MOSFET switch is on is a voltage divider with a pullup resistance of RL and a pulldown resistance of RON. The voltage-­‐divider equation for the output voltage is .193 = VSRON/( RON + RL) = 3RON/(RON + 10000) Solving for RON gives 689Ω. 2. VTH = VSRON/(RON + RL) = .193V RTH = RON || RL = 643Ω 3. Equation 10.66 is vC (t) =VTH +(VS −VTH )e−t/RTHCGS which, after substituting the known values becomes.25 =.193+(3−.193)e−t/(643⋅2⋅10−13 ) . Solving for t gives t = −(643)(2 ⋅10−13 ) ln .25−.193 3−.193 # $ % & ' ( =.5011⋅10−9 , i.e., about 0.5ns. 4. The measured value for tpd,0→1 is 0.6ns. 5. The measured value for tpd,1→0 is 3.45ns. Substituting the known values into Equation 10.71 gives 2.5 = 3+(.193−.3)e−t/(10000⋅2⋅10−13 ) , which, when solved for t gives 3.4505ns. The plot from the transient analysis of the ring oscillator is shown below with the start and stop times of one cycle as indicated (measurements at any given point in two successive cycles gives a similar result). The estimate for both transitions is (31.375ns – 15.125ns)/9 = 1.8ns. From questions 4 and 5: tpd,0→1 + tpd,1→0 = 4.15ns which is the conservative worst-­‐case time for two transitions, almost a factor 3 longer!
for The circuit below contains an inverter designed to be used in a system where VS=3V, VOL=0.25V and VOH=2.5V. The input to the inverter is hooked to a voltage source that makes a 0→1 transition at t=0. The performance of the inverter is measured as it drives a 200fF capacitive load, which represents the parasitic capacitance of the wiring and the inputs of other logic gates hooked to the output of the inverter.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

thanks a lot for your help :)

Not the answer you are looking for?

Search for more explanations.

Ask your own question