Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

Show that area of Pythagorean triangle x,y,z cannot be square (U can use that a^4-b^4 = c^2 has no positive solution)

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SEE EXPERT ANSWER

To see the expert answer you'll need to create a free account at Brainly

the base and height of pythagorean triangle are 3d and 4d where d is a constant Area = 1/2 x 3d x 4d = 3d x 2d = 6d^2 this is never a square
Its not generalised though!!
It's a start... Let's say we have x^2 + y^2 = z^2 and xy = 2n^2 (triangle area)

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Okay so we take it as hypothesis and prove it a contradiction..I'll try
|dw:1350135906515:dw|
|dw:1350136054246:dw|
Promising...how will you get a quartic so as to use the given?
You need to multiply the first line of your first post with something...
Writing your first line in full: (x+y)^2 = x^2 + y^2 +2xy = z^2 + 4n^2
|dw:1350136543480:dw|
(x+y)^2 = x^2 + y^2 +2xy = z^2 + 4n^2 Your first line (x-y)^2 = x^2 + y^2 -2xy = z^2 -4n^2
oh!!
:-)
that would yield extra non dependent solution.
*equation (solution)
We, are just trying to get a contradiction....
We are assuming a triangle that is square....
yeah ... three variables 3 non dependent equations ... it's possible to deduce from that.
If u multiply those two above, u get (x^2-y^2)^2 = z^4 - (2n)^4 which contradicts the given so no Pythagorean triangle area is square
yeah i see the trick!!
U almost had it, a bit more time, u would have had it, I think....
well .. I'm not too good with algebraic manipulations.
I shall put up a few more while it's stil quiet....
I usually takes quite lot more than necessary steps to do things.
I might go offline for 2hrs ... well I would enjoy if you tag me in few interesting problems if you have.

Not the answer you are looking for?

Search for more explanations.

Ask your own question