anonymous
  • anonymous
Differentiate. f(θ) = sec θ/3 + sec θ
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
\[f(t) = \frac{ \sec(t) }{ 3 } + \sec(t)\]
anonymous
  • anonymous
this is the question ?
anonymous
  • anonymous
or it's 3+sec(t) in the denominator ?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
yeaaa
anonymous
  • anonymous
in the denominator
anonymous
  • anonymous
\[f(t)=\frac{ \sec(t) }{ 3 + \sec(t) }\]
anonymous
  • anonymous
like this ?
anonymous
  • anonymous
yes
anonymous
  • anonymous
In this case, use quotient rule.
anonymous
  • anonymous
grr mistake :| all over again
anonymous
  • anonymous
\[f'(t) = \frac{ \sec(t)' * (3+\sec(t)) - (3+\sec(t))' * \sec(t) }{ (3+\sec(t))^2 }\]
anonymous
  • anonymous
\[f'(t) = \frac{ \tan(t)\sec(t) * (3+\sec(t)) - \tan(t)\sec(t) * \sec(t) }{ (3+\sec(t))^2 }\]
anonymous
  • anonymous
\[f'(t) = \frac{ 3\tan(t)\sec(t) }{ (3+\sec(t))^2 }\]
anonymous
  • anonymous
nothing much more to do ..
anonymous
  • anonymous
so you expand and simplify?
anonymous
  • anonymous
the final answer ? you can expand the (3+sec(t))^2 but it's not really important ..
anonymous
  • anonymous
i used the quotient rule in order to find the derivative as you can see the procedure
anonymous
  • anonymous
okaay thank you :)
anonymous
  • anonymous
yw
anonymous
  • anonymous
i got the aanswer wrong
anonymous
  • anonymous
i'm doing this online quiz and wen i put in the answer it was wrong

Looking for something else?

Not the answer you are looking for? Search for more explanations.