What are the possible number of positive, negative, and complex zeros of f(x) = –3x4 + 5x3 – x2 + 8x + 4 ?

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga.
Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus.
Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your **free** account and access **expert** answers to this

and **thousands** of other questions.

- anonymous

- katieb

See more answers at brainly.com

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your **free** account and access **expert** answers to this

and **thousands** of other questions

- anonymous

It equals the highest degree of your polynomial.

- shubhamsrg

descartes' ?

- anonymous

All zeros are complex, meaning they are of the form a+bi. Sometimes b=0, which eliminates the imaginary component, making it appear to be only real. So the number of complex roots of a polynomial is equal to the highest degree. I missed that you asked about positive and negative zeros. That would use Descartes' Rule of Signs as @shubhamsrg suggested.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

## More answers

- anonymous

Descarte's Rule says to count how many times the signs change from term to term in your polynomial. Then the number of positive zeros is either equal to that number or equal to that number minus even integers. I count 3 sign changes, so that would mean that there are either 3 or 3-2=1 positive real zeros.

- anonymous

The next step is to put a -x into your polynomial everywhere there is an x. After you see how that negative would work out through the various powers, count the sign changes in this new f(-x). The number of negative real zeros is equal that number or that number minus even integers. I counted 1. That would mean that there is 1 negative zero.

- anonymous

Since they asked for the possible numbers... I would say there are 3 positive real zeros possible, 1 negative real zero possible. And the number of complex roots is equal to the degree... do you know what that is?

Looking for something else?

Not the answer you are looking for? Search for more explanations.