Find parametric equations for the tangent line to r(t) =< t^2- t + 1, t , sin(t) > at the point (1,0, 0).

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Find parametric equations for the tangent line to r(t) =< t^2- t + 1, t , sin(t) > at the point (1,0, 0).

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

found the derivative of r(t) to be r'(t) <2t-1,1,cos(t)> but not sure what to do with that. And he point (1,0,0) occurs at t=0 help please? :]
Put \(t=0\) into the expression for \(r'(t)\) and you will get a tangent vector in your point. Hope you can write an equation of the line if you know its directing vector and the point throught it.
Ahh that makes a lot of sense! Thank you~

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Can you write an answer here?

Not the answer you are looking for?

Search for more explanations.

Ask your own question