Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

i need help with an integral\[\int x J_n^2(x) \ \text{d}x\]

I got my questions answered at in under 10 minutes. Go to now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer


To see the expert answer you'll need to create a free account at Brainly

\[J _{n}\] is just any arbitary function ?
bessel function of first kind

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

i am out then
\[x^2\frac{ d^2y }{ dx^2 }+x \frac{ dy }{ dx }+(x^2-n^2)y=0\]
so the bessel function is the solution to this curve
can we find the intergral of these just trying !! i dont know :(
Well my good friend wikipedia tells us that we can expand the Bessel Function as follows with taylor series:
So then the integral becomes: \[\int x\sum_{m=0}^\infty \frac{(-1)^m}{m!(m+n)!}(\frac{1}{2}x)^{2m+n}\]for integer orders
\[\int x\left(\sum_{m=0}^\infty \frac{(-1)^m}{m!(m+n)!}(\frac{1}{2}x)^{2m+n}\right)^2 dx\] - forgot the dx
can u show me the steps with wolfram?
No, I can't. But you do see the answer, right? My guess is that to get the answer you have to write \((\sum...)^2\) as a single sum using binomial expansion or something, then you can integrate it easily since it's just a polynomial. Then you reconstruct the sum as three separate sums and get the nice answer that alpha got:[n%2C+x]^2+dx

Not the answer you are looking for?

Search for more explanations.

Ask your own question