anonymous
  • anonymous
i need help with an integral\[\int x J_n^2(x) \ \text{d}x\]
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
@mahmit2012
anonymous
  • anonymous
\[J _{n}\] is just any arbitary function ?
anonymous
  • anonymous
bessel function of first kind

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
i am out then
experimentX
  • experimentX
*
anonymous
  • anonymous
\[x^2\frac{ d^2y }{ dx^2 }+x \frac{ dy }{ dx }+(x^2-n^2)y=0\]
anonymous
  • anonymous
so the bessel function is the solution to this curve
anonymous
  • anonymous
can we find the intergral of these
anonymous
  • anonymous
emm...im just trying !! i dont know :(
anonymous
  • anonymous
Well my good friend wikipedia tells us that we can expand the Bessel Function as follows with taylor series: http://upload.wikimedia.org/math/1/b/2/1b23400208b273377e8cdec7d82f0242.png
anonymous
  • anonymous
So then the integral becomes: \[\int x\sum_{m=0}^\infty \frac{(-1)^m}{m!(m+n)!}(\frac{1}{2}x)^{2m+n}\]for integer orders
anonymous
  • anonymous
\[\int x\left(\sum_{m=0}^\infty \frac{(-1)^m}{m!(m+n)!}(\frac{1}{2}x)^{2m+n}\right)^2 dx\] - forgot the dx
anonymous
  • anonymous
can u show me the steps with wolfram?
anonymous
  • anonymous
No, I can't. But you do see the answer, right? My guess is that to get the answer you have to write \((\sum...)^2\) as a single sum using binomial expansion or something, then you can integrate it easily since it's just a polynomial. Then you reconstruct the sum as three separate sums and get the nice answer that alpha got: http://www.wolframalpha.com/input/?i=integrate+x+BesselJ[n%2C+x]^2+dx
anonymous
  • anonymous
|dw:1350273811145:dw|
anonymous
  • anonymous
|dw:1350274006370:dw|
anonymous
  • anonymous
|dw:1350274137879:dw|
anonymous
  • anonymous
|dw:1350274335219:dw|

Looking for something else?

Not the answer you are looking for? Search for more explanations.