anonymous
  • anonymous
f(x) = x^2 +2x -1 Solve f(f(x)) = f(x)
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
|dw:1350309182854:dw|
anonymous
  • anonymous
\[f(x)=(x+1)^{2}-2\]
shubhamsrg
  • shubhamsrg
we have f(f(x)) - f(x) =0 or (x^2 + 2x-1)^2 + (x^2 + 2x -1) - 1 =0 its a quadratic in x^2 + 2x-1 it'll give 2 real vales of that,, then we'll solve for x 4 roots shall be obtained..

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

hartnn
  • hartnn
is this correct ? f(f(x))=f(x) f(x)=f^-1 (f(x)) f(x) = x to get x^2 +2x -1 = x so solving this : x^2+x-1=0
anonymous
  • anonymous
Can't see the wood for the trees... The equation is f(x)^2 + 2f(x) -1 = f(x) -> f(x)^2 + f(x) -1 = 0 as shubhamsrg said...
anonymous
  • anonymous
if we do it like this \[f(x)=(x+1)^{2}-2 \implies f(f(x))=(f(x)+1)^{2}-2\] using it in the given equation we have \[f(x)=(f(x)+1)^{2}-2\] putting the value of f(x) \[(x+1)^{2}-2=((x+1)^{2}-2+1)^{2}-2\] solving that we get \[x+1=(x+1)^{2}-1\] and then solve again

Looking for something else?

Not the answer you are looking for? Search for more explanations.