Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

homework eight part one i am okay with the rest but dont understand the first bit

MIT 6.002 Circuits and Electronics, Spring 2007
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SEE EXPERT ANSWER

To see the expert answer you'll need to create a free account at Brainly

H8P1 IMPULSE The impulse response is a concept often used in electrical engineering, because it fully characterizes the reaction of a linear system as a function of time. As a first step, we will learn the techniques used to calculate the impulse response of a given system. Consider the circuit shown below. Assume that both the capacitor and the inductor have been left in their relaxed states for a very long time. The voltage source is driven by a signal of vin=δ(t), that is a unit impulse at time t=0. R1=10Ω, L=5mH, R2=10kΩ, C=33nF. (a) What is the value of vR1(t) at t=0−? incorrect (b)Derive a differential equation expression for vR1(t), the voltage across the resistor in series with our inductor. What is the value of vR(t) at t=0+? Hint: it may be helpful to know that ∫0+0−δ(t)dt=1 incorrect (c)Assuming an exponential decay, what is the value for vR(t) at t=1ms? incorrect (d)Similarly, derive a differential equation expression for vC(t), the voltage across our capacitor. What is the value of vC(t) at t=0+? incorrect (e)What is the value for vC(t) at t=1ms?
Well, I can answer H8P1 (a), which is simply "0V". The time is t = 0-s, so JUST before the Impulse will start. So the supplied voltage is zero and therefore all voltages in the network are 0. Still working on Question (b)-(e).
ok, I got all of them now. I do all calcs with MatLab since I like scripting :) so: R1 = 10; R2 = 10000; C = 33*10^-9; L = 5 * 10^-3; t0 = 0; t0plus = 1; t0min = 0; tms = 0.001; %Q1 v_R1_0min = R1/L * exp(-t0*R1/L) * t0min % Q2 (see: http://en.wikipedia.org/wiki/RL_circuit#Impulse_response ) v_r1_0plus = R1/L * exp(-t0*R1/L) * t0plus % Q3 (see: http://en.wikipedia.org/wiki/RL_circuit#Impulse_response ) v_r1_1ms = R1/L * exp(-tms*R1/L) * t0plus % Q4 (see: http://en.wikipedia.org/wiki/RC_circuit#Impulse_response ) v_c_0plus = 1/(R2*C) * exp(-t0/(R2*C)) * t0plus % Q5 (see: http://en.wikipedia.org/wiki/RC_circuit#Impulse_response ) v_c_0plus = 1/(R2*C) * exp(-tms/(R2*C)) * t0plus Values then are: v_R1_0min = 0 v_r1_0plus = 2000 v_r1_1ms = 270.6706 v_c_0plus = 3.0303e+003 v_c_0plus = 146.3667

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

v_c_0plus is rong dude
That's scientific notation! v_c_0plus = 3.0303e+003 = 3030.3 Also check your values for R1, R2, C, L and the times. But for me it's correct. Only one point missing for H8P3.
remove "+" sign its enough

Not the answer you are looking for?

Search for more explanations.

Ask your own question