tiffanymak1996
  • tiffanymak1996
find, from first principles, the derivative of y= (sinx)(e^x)
Mathematics
katieb
  • katieb
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

tiffanymak1996
  • tiffanymak1996
\[\frac{ dy }{ dx }= \lim_{h \rightarrow 0} \frac{e ^{x+h} \sin(x+h) - e^{x} sinx}{h}\]
anonymous
  • anonymous
Maybe try an angle sum identity for sin(x+h), and for e^{x+h}, you add the exponents when multiplying powers of the same base. See if you can use that to factor things out.
tiffanymak1996
  • tiffanymak1996
i did the question till, \[\lim_{h \rightarrow 0}\frac{e^x e^h sinx \cosh + e^x e^h cosxsinh -e^xsinx}{h}\] but i can't eliminate the terms

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
add some increment to both sides.

Looking for something else?

Not the answer you are looking for? Search for more explanations.