(5^3 +1) / (5^3 +4^3) = (5+1)/(5+4) (67^3 + 41^3) /(67^3 + 26^3) = (67 +41)/(67+26) So cancelling 3's works?

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

(5^3 +1) / (5^3 +4^3) = (5+1)/(5+4) (67^3 + 41^3) /(67^3 + 26^3) = (67 +41)/(67+26) So cancelling 3's works?

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

yes
For the first one, no, for the second one, yes
Works for first and second, question is why?

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Oh, let me correct that. Was wrong about my answer. forgot that 1 does not change even if cubed.
So correcting my self, yes, because \[1^3 = 1\]
124^3 + 43^3/ 124^3 +81^3 = 124 +43/124 +81
this is working because of the factorisation of\[x^3+y^3\]
\[\frac{ x^3+y^3 }{ x^3+z^3 }=\frac{ (x+y)(x^2-xy+y^2) }{ (x+z)(x^2-zx+ z^2)}\] which should equal\[\frac{ x+y }{ x+z }\] if and only if \[x^2-xy+y^2=x^2-zx+z^2\] \[x(y-z)=y^2-z^2\]
\[5(1-4)=1^2-4^2\] true
\[67(41-26)=41^2-26^2\] IS THAT TRUE
Yes, that's true, what's the general rule, though?
this should be true\[x=y-z\]
(n^3 + a^3)/(n^3 +b^3) where a+b = n
this should be true \[x=y+z\] the top one not true, a+b=n
1 + 4 = 5 41 +26 =67 43 +81 = 124 Still haven't (quite) proved it though....
\[x(y-z)=y^2-z^2=(y-z)(y+z)\] \[x=y+z\] but \[y \neq z\]
1 + 4 = 5 41 +26 =67 43 +81 = 124 Still haven't (quite) proved it though.... ????
K, you sub in what u r saying into the expansion of the cubes and then the denominator and numerator are equal, right?
right,equal yes and without cubes
Cool.

Not the answer you are looking for?

Search for more explanations.

Ask your own question