At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga.
Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus.
Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your **free** account and access **expert** answers to this and **thousands** of other questions.

I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your **free** account and access **expert** answers to this and **thousands** of other questions

make sense?

yeah im finished here :)

But wait. If I'm doing this way, why do I have to consider lnx in the interval [1, 1+t] for t>0?

no problem rolypoly :) yeah thats the domain for which we want prove that inequality

1. right and showing f'(x)>0
2. we should just consider the given interval [1,1+t]

How can we ''just consider the given interval''?

emm...sorry what do u mean?

ahh yeah .. when u want to show that f'(x)>0 u must use that

yes :)

Then, it's bad. Once I put f'(x) = 0, I get x=0

u see f'(x)>0 for given interval

why letting it equal to zero?

Errr, usual practice.