Ace school

with brainly

  • Get help from millions of students
  • Learn from experts with step-by-step explanations
  • Level-up by helping others

A community for students.

Prove Cassini's identity using the matrix representation of the Fibonacci sequence

Linear Algebra
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SEE EXPERT ANSWER

To see the expert answer you'll need to create a free account at Brainly

oh is that all? easy! one question, whats cassini's identity? To google!
Heh, I can open questions all over the shop now.....:-)
http://planetmath.org/ProofofCassinisIdentity.html come across this which answeres your question, but certainly doesnt answer mine.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

out of interest. whats the formula for the fibonacci sequence
Where's the matrix?
\[F_n = F_{n-2} + F_{n-1}\] ?
oh sorry yes your right there is none there
You can represent the Fibonacci sequence as: \[\left[\begin{matrix}F_{n+1} & F_n \\ F_n &F_{n-1}\end{matrix}\right] = \left[\begin{matrix}1 & 1 \\ 1 & 0\end{matrix}\right]^n\]
This is fairly easy to prove by induction
define F_0 as 0, F_1 as 1, and F_2 as 1
If the first equation is true, then\[\left[\begin{matrix}1 & 1 \\ 1 & 0\end{matrix}\right]^{n+1}=\left[\begin{matrix}1 & 1 \\ 1 & 0\end{matrix}\right]^n*\left[\begin{matrix}1 & 1 \\ 1 & 0\end{matrix}\right]\]: \[= \left[\begin{matrix}F_{n+1} & F_n \\ F_n & F_{n-1}\end{matrix}\right]*\left[\begin{matrix}1 & 1 \\ 1 & 0\end{matrix}\right]\] \[= \left[\begin{matrix}F_{n+1}+F_n & F_{n+1} \\ F_n+F_{n-1} & F_n\end{matrix}\right]=\left[\begin{matrix}F_{n+2} & F_{n+1} \\ F_{n+1} & F_n\end{matrix}\right]\]
So: \[\left[\begin{matrix}F_{n+1} & F_n \\ F_n & F_{n-1}\end{matrix}\right] = \left[\begin{matrix}1 & 1 \\ 1 & 0\end{matrix}\right]^n \forall n \in Z_+\]
now, take the determinant of both sides: \[F_{n+1}F_{n-1}-F_n^2=\det \left[\begin{matrix}1 & 1 \\ 1 & 0\end{matrix}\right]^n\]
The determinant of the products of square matrices is the products of the determinants of the matrices: \[= (\det \left[\begin{matrix}1 & 1 \\ 1 & 0\end{matrix}\right])^n\]
=\[(0-1)^n=-1^n\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question