Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

prove the same result, not by induction, but by directly manipulating the sum: let A be the sum, and show that xA = A + xn+1 -1.(Use sigma notation in your proof).

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

\[\sum_{i=0}^{n} x ^{i} = \frac{ 1-x ^{n+1} }{ 1-x }\]
First off, write (in sigma notation) what xA would be. What do you get?
i don't get it, whats xA

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

\[A=\sum_{i=0}^n x^i\]xA=?
im so confused
i hate does things
those
Maybe it would help if you wrote the sum out. So you would get \[\sum_{i=0}^n x^i=x^0+x^1+x^2+x^3+...\]Then, \[xA=x\sum_{i=0}^n x^i=x(x^0+x^1+x^2+x^3+...)=x^1+x^2+x^3+x^4+...\]Can you write this back in sigma notation?
so thats gonna be the same as the above one
Almost. There's one little difference. Your new sum should be \[\sum_{i=0}^n x^{i+1}\]All that's changed, is that each power of x has 1 added to it. Do you understand why this happens?
yeah i get it, but can't you change the index to start from 1? wouldn't it be the same?
You could, you just need to be careful to also set the final index to n+1.That's why I prefer to start at 0. So \[\sum_{i=0}^n x^{i+1}=\sum_{i=1}^{n+1} x^i\]Now, all you need to do, is show that \(A+x^{n+1}-1\) is the same thing as that new sum.
im having trouble understanding what the questions asks as to prove. whats A is the sum, then \[x \sum_{0}x ^{i}\]
so its basically xA=A+xn+1, but what about -1?
Notice that your new sum does not have the \(x^0=1\) term. So you need to subtract off the 1.
I don't get how its gonna equal \[\frac{ 1-x ^{n+1} }{ 1-x }\], how does it prove that? if I basically get \[\sum_{i=0}^{n} x ^{n+1}-1\]
Sorry it took so long for me to get back to you. OS was acting up for me quite seriously. But you want to show that \[\sum_{i=0}^n x^{i+1}=\left(\sum_{i=0}^n x^i\right)+x^{n+1}-1\]There shouldn't be any division involved.

Not the answer you are looking for?

Search for more explanations.

Ask your own question