Here's the question you clicked on:
burhan101
limits
\[\lim_{x \rightarrow 3} \frac{ \frac{ 1 }{ x }-\frac{ 1 }{ 3 } }{ x-3 }\]
What have you tried so far?
i know we're supposed to rationalize, but how ? :S
First of all, can you turn \[\frac{1}{x}-\frac{1}{3}\]Into a single fraction?
Remember that \[\frac{a}{b}+\frac{c}{d}=\frac{ad}{bd}+\frac{cb}{bd}=\frac{ad+cb}{bd}\]
i get \[\frac{ 3-x }{ 3x }\]
Altogether it's:\[\Large \lim_{x\rightarrow 3}\frac{\frac{3-x}{3x}}{x-3}\]Can you see any way to cancel things out?
|dw:1350446553429:dw|