Here's the question you clicked on:
TYDE
g
\[\int\limits \cos^{2}xsin^{2}xdx => \int\limits\left(\frac{1+\cos2x}{2}\right) \left(\frac{1-\cos2x}{2}\right) dx\] maybe or \[\int\limits \cos^{2}xsin^{2}xdx => \int\limits(1-\sin^{2}x)(\sin^{2}x) dx\]
\[\int\limits(1-\sin^{2}x)(\sin^{2}x) dx => \int\limits \sin^{2}x-\sin ^{4} xdx \]
\[=> \int\limits \sin^{2}x dx-\int\limits \sin^{4}xdx \]
you may wanna do it like this rather i guess.. sin^2x cos^2x = sin^2 (2x) / 4
|dw:1350457296214:dw|