amorfide
  • amorfide
integrate 1/3x+2
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
amorfide
  • amorfide
|dw:1350485381398:dw|
amorfide
  • amorfide
is this right?
amorfide
  • amorfide
@ParthKohli

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Zarkon
  • Zarkon
+c
amorfide
  • amorfide
that stupid freaking C lol
ParthKohli
  • ParthKohli
Yeah, that is and then a constant... don't forget the constant.
amorfide
  • amorfide
parth tell me how to integrate this one...
amorfide
  • amorfide
|dw:1350485522236:dw|
ParthKohli
  • ParthKohli
\[2\int{dx \over x^2 + 3}\]That's tricky stuff: trig substitution.
amorfide
  • amorfide
i literally cant do it :P
ParthKohli
  • ParthKohli
no no no... wait
ParthKohli
  • ParthKohli
not trig substitution
amorfide
  • amorfide
if it was 2/x²+1 it would be a trig function
ParthKohli
  • ParthKohli
@Zarkon Please, if you might be able to help?
Zarkon
  • Zarkon
you can use trig sub
ParthKohli
  • ParthKohli
Got it
ParthKohli
  • ParthKohli
How?
Zarkon
  • Zarkon
\[x=\sqrt{3}\tan(\theta)\]
amorfide
  • amorfide
huh explain?
ParthKohli
  • ParthKohli
Oh, yup...that makes sense.
ParthKohli
  • ParthKohli
@amorfide Trigonometric substitution! Search it on Google.
Zarkon
  • Zarkon
if you have \[\int\frac{2}{x^2+1}dx\] then just recall that \(\displaystyle\frac{d}{dx}\tan^{-1}(x)=\frac{1}{x^2+1}\) and therefore \[\int\frac{2}{x^2+1}dx=2\cdot\tan^{-1}(x)+c\] if you want \[\int\frac{2}{x^2+3}dx\] then, if you want, you can use the substitution I gave above
amorfide
  • amorfide
so if 2/(x²+1) = 2tan^-1(x/root1) all over root 1 2/(x²+3) = |dw:1350487017539:dw|
Zarkon
  • Zarkon
+c ;)
amorfide
  • amorfide
LOL thank you! always forget the C... would i lose a mark for not putting +c if i do not need to figure out C?
Zarkon
  • Zarkon
yes
amorfide
  • amorfide
ahh okay, thank you :D
Zarkon
  • Zarkon
there will be a time in the future when you will find a value for C. Particularly when doing initial value differential equations

Looking for something else?

Not the answer you are looking for? Search for more explanations.