\[ Let f:A \rightarrow B $ be a given function. Prove that f is one-to-one (injective) $ \Leftrightarrow f(C\cap D)=f(C)\cap f(D) $ for every pair of sets C and D in A $\]

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

\[ Let f:A \rightarrow B $ be a given function. Prove that f is one-to-one (injective) $ \Leftrightarrow f(C\cap D)=f(C)\cap f(D) $ for every pair of sets C and D in A $\]

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

Let \[f:A\rightarrow B\] be a given function. Prove that f is one-to-one (injective) \[\leftrightarrow f(C\cap D)=f(C)\cap f(D)\] for every pair of sets C and D in A
\[Let f:A\rightarrow B be a given function. Prove that f is one-to-one (injective) \\\Leftrightarrow f(C\cap D)=f(C)\cap f(D) for every pair of sets C and D in A\]
i was just rewriting so i could read it, i am not sure i know how to do it

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

well one way is trivial, since \(f(A\cap B)\subset f(A)\cap f(B)\) for any \(f\)
or does that need clarification as well? we can write it out if you like
yes we need to right it..
ok
why letter is not separated
suppose \(z\in f(A\cap B)\) then \(z=f(x)\) for some \(x\in A\cap B\) making \(x\in A\) and \(x\in B\) so \(z\in f(A)\) and \(z\in f(B)\) therefore \(z\in f(A)\cap f(B)\)
this shows for any \(f\) you have \(f(A\cap B)\subset f(A)\cap f(B)\)
now we need to prove that if \(f\) in injective, we have \(f(A\cap B)=f(A)\cap f(B)\) since we already have containment one way, this amounts to showing \[f(A)\cap f(B)\subset f(A\cap B)\]
pick a \(z\in f(A)\cap f(B)\) so there exists a \(x_1\) in \(A\) with \(f(x_1)=z\) and likewise there is a \(x_2\) in \( B\) with \(z=x_2\) now comes the "injective" part since \(f\) is injective, and \(f(x_1)=f(x_2)=z\) we know \(x_1=x_2\) and so \[z\in f(A\cap B)\]
typo there, i meant "likewise there exists \(x_2\in B\) with \(f(x_2)=z\) sorry
so that is the proof one way, that "if \(f\) is injective, then \(f(A\cap B)=f(A)\cap f(B)\)
other way is easier, since a singleton is a set
A={x} B={y} you mean like this one..

Not the answer you are looking for?

Search for more explanations.

Ask your own question